The kinematics of a globally propagating disturbance in the solar corona

نویسندگان

  • David M. Long
  • Peter T. Gallagher
  • R. T. James McAteer
  • Shaun Bloomfield
چکیده

The kinematics of a globally propagating disturbance (also known as an “EIT wave”) is discussed using Extreme UltraViolet Imager (EUVI) data from Solar Terrestrial Relations Observatory (STEREO). We show for the first time that an impulsively generated propagating disturbance has similar kinematics in all four EUVI passbands (304, 171, 195, and 284 Å). In the 304 Å passband the disturbance shows a velocity peak of 238±20 km s within ∼28 minutes of its launch, varying in acceleration from 76 m s to -102 m s. This passband contains a strong contribution from a Si XI line (303.32 Å) with a peak formation temperature of ∼1.6 MK. The 304 Å emission may therefore be coronal rather than chromospheric in origin. Comparable velocities and accelerations are found in the coronal 195 Å passband, while lower values are found in the lower cadence 284 Å passband. In the higher cadence 171 Å passband the velocity varies significantly, peaking at 475±47 km s within ∼20 minutes of launch, with a variation in acceleration from 816 m s to -413 m s. The high image cadence of the 171 Å passband (2.5 minutes compared to 10 minutes for the similar temperature response 195 Å passband) is found to have a major effect on the measured velocity and acceleration of the pulse, which increase by factors of ∼2 and ∼10, respectively. This implies that previously measured values (e.g., using EIT) may have been underestimated. We also note that the disturbance shows strong reflection from a coronal hole in both the 171 and 195 Å passbands. The observations are consistent with an impulsively generated fast-mode magnetoacoustic wave. Subject headings: Sun: corona – Sun: flares

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Globally Propagating Coronal Waves

Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globall...

متن کامل

Solar Mini-Dimming Kinematics and Their Positive Correlations with Coronal Mass Ejections and Prominence

Solar mini-dimmings can be detect in the Extreme Ultra-Violet coronal eruptions. Here, sequences of 171_A images taken by Solar Dynamic Observatory/Atmospheric Imaging Assembaly on 13 June 2010 are used. In this special day, both of coronal mass ejection and prominence were observed. The average velocities and accelerations of 500 mini-dimmings which were detected using on feature based classif...

متن کامل

The Wave Properties of Coronal Bright Fronts Observed Using SDO/AIA

Coronal bright fronts (CBFs) are large scale wavefronts that propagate though the solar corona at hundreds of kilometers per second. While their kinematics have been studied in detail, many questions remain regarding the temporal evolution of their amplitude and pulse width. Here, contemporaneous high cadence, multi-thermal observations of the solar corona from the Solar Dynamic Observatory (SD...

متن کامل

Understanding the Physical Nature of Coronal “EIT Waves”

For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultrav...

متن کامل

On the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere

We present a comprehensive model of the global properties of Alfvén waves in the solar atmosphere and the fast solar wind. Linear non-WKB wave transport equations are solved from the photosphere to a distance past the orbit of the Earth, and for wave periods ranging from 3 s to 3 days. We derive a radially varying power spectrum of kinetic and magnetic energy fluctuations for waves propagating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008